EXAMEN MICRO-200 de Janvier 2024

QUESTION 1 - Poutre Composite ( 36 points)

Une poutre composite de longueur L et de masse négligeable est supportée en A et en B, voir la
Figure 1, qui est dessinée dans le plan xy. La poutre est soumise a une force distribuée d’intensité
q [N/m] et a une force ponctuelle P = qL/2.

La poutre est composée de deux matériaux. Le matériau en vert a un module de Young E4. Le
matériau en bleu a un module de Young E, = 2E;. La section a une largeur b et une hauteur
2a.

Pour les questions Q1b et Qlc, la section de la poutre est illustrée en Figure 2, dans le plan yz.
[l'y a un trou (vide) de largeur b/2 et de hauteur d.

Pour les questions Q1d a Q1g, la section de la poutre est indiquée en Figure 3, dans le plan yz.
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Figure 1: Poutre AB sujet a une force distribuée g et a une force ponctuelle P. Le
systeme de coordonnées xy a le point A comme origine.
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Figure 2: Section de la poutre composite pour | Figure 3: Section de la poutre composite pour
les questions Q1b et Qlc. les questions Q1d a Qlg.
L'origine du systeme de coordonnées yz est L'origine du systeme de coordonnées yz est
indiquée. indiquée.
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» Q1la) (4 pts)
o Dessinez le diagramme des forces de la poutre AB (avec un systéme de coordonnées).

o Calculez toutes les forces et tous les moments de réaction sur la poutre.
O Est-ce que la poutre est statiquement indéterminée ?

Pour les deux questions suivantes (Q1lb et Qlc), la section de la poutre est donnée en Figure 2.
» Qib) (7 pts)
o Calculez la position de I'axe neutre y, en fonction de a, b, et d dans le systeme de
coordonnées indiqué en Figure 2 (c est-a-dire avec y = 0 en bas de la poutre).
» Qic) (2 pts)

o Quelle doit étre la valeur de d pour que y, = a ? Justifiez votre réponse

Pour les questions suivantes (Q1d a Q1g), la section de la poutre a changé et est donnée en
Figure 3 (dans le plan yz).
» Qid) (6 pts)

o Calculer la rigidité en flexion (Elz,yo) de la poutre en Figure 3 en fonction seulement
dea,b, etE;.
= Indice : vous pouvez utiliser que y, = a

» Qle) (5 pts)
o Calculer la fleche w(x) le long de la poutre en fonction seulement de x, q, L, et (Elz,yo).
®  ndicel: Vous pouvez utiliser les formules dans le tableau annexé au formulaire.

= Indice2: Vous pouvez utiliser le changement de variable x — (L — x) sile tableau
ne donne la fleche que pour x entre 0 et L/2.
» Qif) (7 pts)

o Trouvez le moment de flexion interne Mz(x) le long de la poutre en fonction de: x,
qetL.

o Pour quelle valeur (ou valeurs) de x est-ce que |[Mz(x)| est maximum ? (Justifier)
o Quelle est la valeur de Mz(x) en ce point, en fonction de q et de L?

Indice : vous étes libre d’utiliser la méthode de votre choix pour trouver M,(x), mais
la méthode des sections nous semble la plus simple pour ce probleme.

» Qlg) (5 pts)
o ax=L/4, calculez la contrainte ox(y). Donnez votre réponse en fonction

de:{y, Ey, (El,y,), L, etq} oude{y, Ey, (El,, ) et M,(x = %)}. Travaillez
dans le systéeme de coordonnées de la Figure 3.

o Dessinez ox(y) en fonction de y.

o Pour quelle valeur de y est-ce que |ax(y)| est maximum ? Cette contrainte
maximale (en valeur absolue) est-elle en traction ou en compression ? Justifier.
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Q1la)

Free body diagram

T

Sum of forces along x:

Z Fx = RAX = O
Rax =0
Sum of forces along y:

ZFy = qu _P_RA_RB == O

Ry+Rp = %qu
Sum of moments at point A:
M, = RgL —qlL%+P%= 0
By substituting P,
L? L?
RBL_%?"‘%Z: 0
I
Rp = qu
I
Ry=q 2

All unknown reactive forces can be determined from the equations of equilibrium alone, so the
beam is statically determinate.
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Q1lb)
We will divide the beam into 3 zones (@ - @) shown in the following diagram. Zone 3 is a
hole. Zone 2 is a full rectangle of material E>. Zone 1 is a full rectangle of material Ei.
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The position of the neutral axis yo can be calculated by
[, EQ)ydydz
J, EQ)dydz
_ Tl + T2 - T3
As stated in the question, we set y = 0 at the bottom of the beam.

Zone 1:
b a
A1 - f Eldde - f Elf dy dZ - Elab
1 z=0 y=0
b 1
T, =f E,ydydz = 1f f ydy dz = = E;a*b
1 z=0vy=0 2
Zone 2:
b 2a
A2 == Ezf f dy dZ - ZElab
=0Yy=a
b 2a 1 2a
T2 == Ezf f ydy dZ - ZEle - Elb(4’a2 - az) - 3E1a2b
z=0Yy=a
Zone 3:
3b/4 a+d b
A3:E2f de dyZZEl_d:Elbd
b/4 y=a 2
3b/4 a+d 21atd b b
y
T3 :Ezf de ydyZZEl__ =E1—[(a+d)2—a2] =E1—(2ad+d2)
z=b/4 y=a 22 a 2 2

We can now combine, remembering to subtract the hole and add the material:
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aZ

E1bS

+ E1b3a2 - Elg(zad + dZ)

2
L +3a? —%(Zad +d?)

Yo =

_2
a+2a—d
7a? d?
%
Yo 3a—d

7 . .. . . .
Ifd =0, wegety, = - @ > a,putting the neutral axis in the blue material, which is reasonable
since the blue material is more rigid.

Alternative Q1b: We could also have divided the beam in different ways. Here are 2 examples.

b/4 b/4 b/4 b/4
L ® e
v 2| @ J1@1° Ple@ dfl@]|°
yO v v 0 v
‘ < > 4 < /2 > t
z E, @ b/2 a E, @ / a
O.‘ ‘" O.: :w
) b . b

For the left example,
Zone 2:

b/4 r2a 1
AZ ES Ezf f dy dZ = _Elab
z=0 JYy=a 2
2a
b 3
= ElZ(ALa2 —a?) = ZElba2

b/4 r2a b1
TZ = Ezf f ydy dZ = 2E1 Zzyz
7 —

=0 y=a a

Zone 4 (similar to zone 2): A, = %Elab, T, = %Elba2

Zone 3:
3b/4 2a b
z=b/4 y=a+d 2
3b/4 2a byz 2a b
T3 = E2 f de ydy = 2E1__ == El_ [(2&)2 - (a + d)Z]
z=b/4 y=a+d 22 a+d 2

b
= E1§(3a2 — 2ad — d?)

For the right example,
Zone 2:
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b/4 ra+d 1
AZ = Ezf f dde == EElbd
VA

b/4 ra+d = y=2'1 a+d b
T, =E dydz = 2E;—=v? =E | d)? — a?]
2 2 yayaz 12757 14(a+) a
z=0 JYy=a a

1
= ZElb(Zad + d?)
Zone 4 (similar to zone 2): A, = %Elbd, T, = iElb(Zad + d?)
Zone 3:

b 2a
A3 = Ezf de dy = 2E1b(a - d)
z=0 y

=a+d
2a

= E;b[(2a)? — (a + d)?]

a+d

b 2a yZ
T3 = Ez f de ydy = 2E1 b_
z=0 y=a+d 2

= E;b(3a? — 2ad — d?)

For both alternative examples, Zone 1 is the same as explained above. The position of the
neutral axis yo is given by:

7a? d?
T+ L+ T+T, — —ad—~
oS A ¥ A, + A, +4,  3a—d
Qlc)
We have y, = q,
2 2
Yo 3a—d @
7 2
§a2—3a2=
a? d?
2 2
d=a
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Q1d)

b b
4 4
%
a V1=Y3= 2
Yo=a
a
a y4=§
) b
(EI) = Zi EiIZyoi

Q1d Option 1: we sum areas 1,3 and 4. We separately compute [;,,, for areas 1, 3, 4 about their
“local” neutral axis y1, y3, and ya. Then, we get the [;,,  values for areas 1, 3, 4 about y,, using

“Steiner”.
3 3
yl :y3 zzar Illyl :Ea Z: 13,y3
b
A :A = —_
1 3 a4
2 agb 3 zab 1 5
Iyy, 211y1+(y1_)’0) Ay :E-}_(Ea_a) T:Ea b=
1 3
Ilyo - I3y0 - Ea b
a 1 5
y4:§) I4.y4_ :Ea b
2 1 3 a 2
Ly, = lay, + (Va = ¥o)°As = Eba + (E_a) ab
1

14_'y0 = §a3b

Thus
(EI) = EzlLiy + E;Lyy + Eiluy,

1 . 1, b
(EI):ZEl*Ea b+2El*Ea b+E1*a §

2
(EI) = E1a’b

Alternative Q1d
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3a
a 2 }’2=7 a‘ 5 y5=32_a
Yo=¢a Yo=a
a a
a )’4=§ a‘ Va=73
b > < b >

option 2: we sum E; [; ,,. for areas 2 and 4 and subtract E; [;,,, for area 5. Like before, we need
to use Steiner to go from y; to y,

liopyz = Tays = Isy, = 7500° ~550° = 57a%h
1, 3 2 ab 1,
Itop,yoz ﬁa b+<§a—a) (ab_7):g b
1, b2
(EI) = EZ(Itop,yO) +E1[4y0 = 2E1 *ga b +E1 % § =§E1a b

Q1d Option 3: using integrals: one can also use the integral definition of (EI)
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Q1e) finding w(x) using the Superposition method:

A B
LU
: | : |
I _qL
F=3
w(x) = wu(x) + wp(x)
From the tables we find w, (x) and wg (x)
W(x)=_—qx(L3—2Lx2+x3) 0<x<L
4 24(EI) ’ -0
qL 5 oy qLx(3L% — 4x?) L
= 4+ — — = <x<-—-
a1 (x) = + 5% gy BL7 — 4x%) 96(EI)y O=<x=3
qL qL(L — x)[3L* — 4(x — L)?] L
=+—(L- 312 —4(x — L)*] = -<x<L
Waa(x) =+ (L = 2) gorn [317 — 40— 1)?) 56T FSx<
Combining:
( L
wya(x) +wg(x), 0<x< >
w(x) =1 L
\WA(x)+W32(x), ESx <L
1 1, L 1 Ly 1 13 S L
JEn Tzt T g Tggal) =%=73
) L(—iqx“+—qu3——qL29c2+—qL3x—iqL4) £<x<L
\(EI) ~ 24 24 8 96 96 27 7
Qle) Alternative method: integrating w(x) from M (x), after finding M(x) by sections
d?w _ M(x)
dx?2 ~ (EI)
q
Yy VvV Vv Vv Vv v l l l l| l l l Jl> l YV VvV VvV VvV vV l1)
v, A M,
PR x
qL x ql
L P=- L L L P=—
nel 7T et et et "7
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qL

1 1 1
Ml(x)z——q(L—x)2 4 — (L — )+—(——x)———qx +Zqu,O£x

i , 1 , 3 L
Mz(x)———q(L—x) +—(L—x)——§qx —ZqL +Zqu,§SxSL

Do a first integration to find w’(x):

-1 1 1 L
dw (EI>(—qx —8qu + (), OSxSE
dx -1 1 3 1 L
06 qx —qux +4qL x+C,), ESxSL

Do a 2" integration to get w(x):

14 LIS S 0<x<i
(EI) 220"~ gl + G+ G), =X=7
w(x) =
L L 3 o gzt v Cox t C L <t
D Ga 1 T g Fgal Gt Gy, gsxs
Boundary condition and continuity conditions allow finding the four constants:
w(0) =0
w(L) =0
(dW) _ (dW)
dx x_(%)+ dx x—(é)—
Solution for the four constants:
C=Lald €, =2ql*, C,=0, C,=—qlt
1_96q Y 2_96q Y 33— Y 4_96q

Overall, solution for the deflection w(x) is:

L + ! Lx3 L L3 0< <L
)@t 24qx 281X —ggalx), O=x=y
wed = 1 + L 1 L? 2+5 L3 L L* L< <L
ED 24qx 5g AL —gal’x* + geqlix —geqlh), S <x <
Micro-200
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Q1f) Method 1: by sections

U—

q
)M, (x)
R, V. (x)
———
Sum of forcesiny: Vi(x) + Ry —q-x= 0,
L
neo = qx - 1

4
Sum of Moments at point A:

X
Vi(x) x4+ M (x)— q-x-5= 0,
Therefore, for0 < x < L/2,

M;(x) = —qsz+ %
For thesecond cut, L/2 < x <L,
q
L
) M)
R, I‘L V,(X)
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Sum of forcesiny: V,(x) +Ryy —q-x+P = 0,
V,(x) = qL qL
2= AT Ty
Sum of Moments at point A:
x

L
Vz(x)-x+M2(x)+P-§— q-x-5= 0,
Therefore, for L/2 < x < L,
qx? 3qxL ql?

MZ(x):_2+ 4 4}

Q1f Method 2: by integrating the load to get V(x), then integrating V(x) to get M(x)
q(x) = q,for 0 < x < L, with a pointload Patx = L/2
ForO0 < x < L/2,
n@= [+ = —ax+c
ForL/2 < x <L,
v = [0+ 6= —a-x+C

Since
qL
V1(0) = RAy = T’
We have
qL
C, = —,
17 4

The point load P give a step in VV(x), so

Hence
3qL
C, =
2 4 )
Therefore,
qL
Vi(x) = _Q'x'i'j
3qL
V() = —q-x+——
We now integrate V (x) to find M (x)
ForO0 < x < L/2,
qx? qxL
ForL/2 < x <L,
qx? 3qxL

Since M;(0) = 0,and M,(L) = 0, we have:
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2
Thus, we obtain (as above): ,
s
M = -y &
Max of M,(x)
M,()

To find the maximum, we compute M’(x)=0, and find x = L/4 and x = 3L /4

ForO0 < x < L/2,

L qlL?
Ml(x)max = M <Z) = 32’
ForL/2 < x <L,
3L qlL?
Mz(x)max = M, <T) = 32’

Micro-200
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Qlg)

We know that y, = a, and we also have:

L qlL?
%@—5

2E,a%b
(El) = 3
We know:
—E(y) - M,(x)
Y
A
a
a
» Z
Therefore, for the blue part (a < y < 2a), we have:
L
_2E1 - Ml (Z)
ox(y) = T y—a)
2
- g _ 3qlL?
ox(y) = “2E.ah y-—a)= - 2y O~
3
For the green part at the bottom (0 < y < a), we have:
L
~E M ()
05 = ——— 2y -
2
_ bk 5 _ 3qL?
3

The maximum |o,(y)| occurs aty = 2a, located on the top of the blue part,
3qL?

—_— 0
32a%b <

o, (y =2a) = —

Which means the top of the beam is in compression.
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o(y)

3qL* |

64 a’b

3ql?
32 a?b

Approximate shape of the beam: we can see that at L/4 the top is in compression and the

bottom is in tension.
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