
Micro-200 

EXAMEN	MICRO-200	de	Janvier	2024	

QUESTION	1	–	Poutre	Composite	 (	36	points) 

Une poutre composite de longueur L et de masse négligeable est supportée en A et en B, voir la 
Figure 1, qui est dessinée dans le plan 𝑥𝑦. La poutre est soumise à une force distribuée d’intensité 
𝑞 [N/m] et à une force ponctuelle 𝑃 = 𝑞𝐿/2. 

La poutre est composée de deux matériaux. Le matériau en vert a un module de Young 𝑬𝟏. Le 
matériau en bleu a un module de Young 𝑬𝟐 = 𝟐𝑬𝟏. La section a une largeur 𝑏 et une hauteur 
2𝑎.  

Pour les questions Q1b et Q1c, la section de la poutre est illustrée en Figure 2, dans le plan 𝑦𝑧. 
Il y a un trou (vide) de largeur 𝑏/2 et de hauteur 𝑑. 

Pour les questions Q1d à Q1g, la section de la poutre est indiquée en Figure 3, dans le plan 𝑦𝑧. 

 

  
Figure 1: Poutre AB sujet à une force distribuée 𝑞 et à une force ponctuelle P. Le 
système de coordonnées 𝑥𝑦	a le point A comme origine. 

 
Figure 2: Section de la poutre composite pour 
les questions Q1b et Q1c.  
L’origine du système de coordonnées 𝑦𝑧 est 
indiquée.	

 
Figure 3: Section de la poutre composite pour 
les questions Q1d à Q1g. 
L’origine du système de coordonnées 𝑦𝑧  est 
indiquée.	
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Ø Q1a) (4 pts) 
o Dessinez le diagramme des forces de la poutre AB (avec un système de coordonnées).  
o Calculez toutes les forces et tous les moments de réaction sur la poutre. 
o Est-ce que la poutre est statiquement indéterminée ?  

 
Pour les deux questions suivantes (Q1b et Q1c), la section de la poutre est donnée en Figure 2.  

Ø Q1b) (7 pts) 
o Calculez la position de l’axe neutre 𝑦# en fonction de 𝑎, 𝑏,	et	𝑑	dans le système de 

coordonnées indiqué en Figure 2 (c'est-à-dire	avec		𝑦 = 0 en bas de la poutre).   

Ø Q1c) (2 pts) 
o Quelle doit être la valeur de 𝑑 pour que 𝑦# = 𝑎 ?  Justifiez votre réponse 
 

Pour les questions suivantes (Q1d à Q1g), la section de la poutre a changé et est donnée en 
Figure 3 (dans le plan 𝒚𝒛).  

Ø Q1d) (6 pts) 
o Calculer la rigidité en flexion !𝐸𝐼!,#!$ de la poutre en Figure 3 en fonction seulement 

de 𝑎, 𝑏, et 𝐸%.  
§ Indice : vous pouvez utiliser que  𝑦! = 𝑎 

 
Ø Q1e) (5 pts) 

o Calculer la flèche 𝑤(𝑥) le long de la poutre en fonction seulement de 𝑥, 𝑞, 𝐿, et !𝐸𝐼!,#!$. 
§ Indice1: Vous pouvez utiliser les formules dans le tableau annexé au formulaire.  
§ Indice2: Vous pouvez utiliser le changement de variable 𝑥 → (𝐿 − 𝑥)  si le tableau 

ne donne la flèche que pour 𝑥 entre 0 et 𝐿/2. 
 
Ø Q1f) (7 pts) 

o Trouvez le moment de flexion interne 𝑴𝒛(𝒙)	le	long	de	la	poutre en fonction de: 𝑥, 
𝑞	et	𝐿. 

o Pour quelle valeur (ou valeurs) de 𝑥	est-ce que |𝑴𝒛(𝒙)|	est maximum ? (Justifier) 
o Quelle est la valeur de 𝑴𝒛(𝒙)	en ce point, en fonction de 𝑞 et de 𝐿?  

§ Indice : vous êtes libre d’utiliser la méthode de votre choix pour trouver 𝑴𝒛(𝒙), mais 
la méthode des sections nous semble la plus simple pour ce problème. 

 
Ø Q1g) (5 pts) 

o à 𝑥	=	L/4,		calculez la contrainte 𝝈𝒙(𝒚). Donnez votre réponse en fonction 
de: { y, E1, H𝐸𝐼&,(!J, L, et q }  ou de { y, E1, H𝐸𝐼&,(!J, et	𝑀&(𝑥 =

)
*
)}. Travaillez	

dans	le	système	de	coordonnées	de	la	Figure	3. 

o Dessinez 𝝈𝒙(𝒚)	en	fonction	de	𝑦. 

o Pour quelle valeur de 𝑦 est-ce que |𝜎𝑥(𝑦)| est maximum ? Cette contrainte 
maximale (en valeur absolue) est-elle en traction ou en compression ? Justifier. 

 



Micro-200 p. 3 

Solution	  

Q1a)  
Free body diagram 

 
	
 

Sum of forces along x: 

\𝐹+ = 𝑅,- = 0 

𝑅,- = 0 
Sum of forces along y: 

\𝐹( = 𝐿𝑞% − 𝑃−𝑅,−𝑅. = 0 

𝑅,+𝑅. =
1
2𝐿𝑞% 

Sum of moments at point A: 

\𝑀, = 𝑅.𝐿 − 𝑞%𝐿
𝐿
2 +𝑃

𝐿
2 = 0 

By substituting P,  

𝑅.𝐿 − 𝑞%
𝐿/

2 + 𝑞%
𝐿/

4 = 0 

𝑅. = 𝑞%
𝐿
4 

𝑅, = 𝑞%
𝐿
4 

 
All unknown reactive forces can be determined from the equations of equilibrium alone, so the 
beam is statically determinate. 
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Q1b)  
We will divide the beam into 3 zones (① - ③) shown in the following diagram. Zone 3 is a 
hole. Zone 2 is a full rectangle of material E2. Zone 1 is a full rectangle of material E1. 

 

 
The position of the neutral axis y0 can be calculated by 

𝑦# =
∫ 𝐸(𝑦)𝑦	𝑑𝑦𝑑𝑧,

∫ 𝐸(𝑦)𝑑𝑦𝑑𝑧,

 

=
𝑇% + 𝑇/ − 𝑇0
𝐴% + 𝐴/ − 𝐴0

 

As stated in the question, we set y = 0 at the bottom of the beam. 
 
Zone 1: 

𝐴% = f 𝐸%𝑑𝑦𝑑𝑧
%

= f 𝐸%f 𝑑𝑦
1

(2#
𝑑𝑧

3

&2#
= 𝐸%𝑎𝑏 

𝑇% = f 𝐸%𝑦𝑑𝑦𝑑𝑧
%

= 𝐸%f f 𝑦𝑑𝑦
1

(2#
𝑑𝑧

3

&2#
=
1
2𝐸%𝑎

/𝑏 

Zone 2:	

𝐴/ = 𝐸/f f 𝑑𝑦
/1

(21
𝑑𝑧

3

&2#
= 2𝐸%𝑎𝑏	

𝑇/ = 𝐸/f f 𝑦𝑑𝑦
/1

(21
𝑑𝑧

3

&2#
= 2𝐸%𝑏

1
2𝑦

/g
1

/1

= 𝐸%𝑏(4𝑎/ − 𝑎/) = 3𝐸%𝑎/𝑏 

 
Zone 3: 

𝐴0 = 𝐸/f 𝑑𝑧f 𝑑𝑦
145

(21

03/*

3/*
= 2𝐸%

𝑏
2 𝑑 = 𝐸%𝑏𝑑	

𝑇0 = 𝐸/f 𝑑𝑧f 𝑦𝑑𝑦
145

(21

03/*

&23/*
= 2𝐸%

𝑏
2
𝑦/

2 h
1

145

= 𝐸%
𝑏
2
[(𝑎 + 𝑑)/ − 𝑎/] = 𝐸%

𝑏
2 (2𝑎𝑑 + 𝑑

/) 

 
We can now combine, remembering to subtract the hole and add the material: 

y

z

b

a

a

b/2

E2

E1

O

dy0

①

② ③
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𝑦# =
𝐸%𝑏

𝑎/
2 + 𝐸%𝑏3𝑎/ − 𝐸%

𝑏
2 (2𝑎𝑑 + 𝑑

/)
𝐸%𝑎𝑏 + 2𝐸%𝑎𝑏 − 𝐸%𝑏𝑑

 

=
𝑎/
2 + 3𝑎/ − 12 (2𝑎𝑑 + 𝑑

/)
𝑎 + 2𝑎 − 𝑑  

𝑦# =
7𝑎/
2 − 𝑎𝑑 − 𝑑

/

2
3𝑎 − 𝑑  

 
If 𝑑 = 0, we get 𝑦# =

7
8
𝑎	 > 𝑎, putting the neutral axis in the blue material, which is reasonable 

since the blue material is more rigid. 
 
 
Alternative Q1b: We could also have divided the beam in different ways. Here are 2 examples. 

 
For the left example,  

Zone 2:	

𝐴/ = 𝐸/f f 𝑑𝑦
/1

(21
𝑑𝑧

3/*

&2#
=
1
2𝐸%𝑎𝑏 

𝑇/ = 𝐸/f f 𝑦𝑑𝑦
/1

(21
𝑑𝑧

3/*

&2#
= 2𝐸%

𝑏
4
1
2𝑦

/g
1

/1

= 𝐸%
𝑏
4
(4𝑎/ − 𝑎/) =

3
4𝐸%𝑏𝑎

/ 

Zone 4 (similar to zone 2):  𝐴* =
%
/
𝐸%𝑎𝑏, 𝑇* =

0
*
𝐸%𝑏𝑎/ 

Zone 3:	

𝐴0 = 𝐸/f 𝑑𝑧f 𝑑𝑦
/1

(2145

03/*

&23/*
= 2𝐸%

𝑏
2 (𝑎 − 𝑑) = 𝐸%𝑏(𝑎 − 𝑑)	

𝑇0 = 𝐸/f 𝑑𝑧f 𝑦𝑑𝑦
/1

(2145

03/*

&23/*
= 2𝐸%

𝑏
2
𝑦/

2 h
145

/1

= 𝐸%
𝑏
2
[(2𝑎)/ − (𝑎 + 𝑑)/]

= 𝐸%
𝑏
2 (3𝑎

/ − 2𝑎𝑑 − 𝑑/) 
 
For the right example, 

Zone 2:	

y

z

b

a

a

b/2

E2

E1

O

dy0

①

②
③

④

b

a

a

b/2

E2

E1

O

y0

①

d②
③

④

b/4 b/4 b/4 b/4
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𝐴/ = 𝐸/f f 𝑑𝑦
145

(21
𝑑𝑧

3/*

&2#
=
1
2𝐸%𝑏𝑑 

𝑇/ = 𝐸/f f 𝑦𝑑𝑦
145

(21
𝑑𝑧

3/*

&2#
= 2𝐸%

𝑏
4
1
2𝑦

/g
1

145

= 𝐸%
𝑏
4
[(𝑎 + 𝑑)/ − 𝑎/]

=
1
4𝐸%𝑏

(2𝑎𝑑 + 𝑑/) 

Zone 4 (similar to zone 2):  𝐴* =
%
/
𝐸%𝑏𝑑, 𝑇* =

%
*
𝐸%𝑏(2𝑎𝑑 + 𝑑/) 

Zone 3:	

𝐴0 = 𝐸/f 𝑑𝑧f 𝑑𝑦
/1

(2145

3

&2#
= 2𝐸%𝑏(𝑎 − 𝑑)	

𝑇0 = 𝐸/f 𝑑𝑧f 𝑦𝑑𝑦
/1

(2145

3

&2#
= 2𝐸% 𝑏

𝑦/

2 h
145

/1

= 𝐸%𝑏[(2𝑎)/ − (𝑎 + 𝑑)/]

= 𝐸%𝑏(3𝑎/ − 2𝑎𝑑 − 𝑑/) 
 
For both alternative examples, Zone 1 is the same as explained above. The position of the 
neutral axis y0 is given by: 

𝑦# =
𝑇% + 𝑇/ + 𝑇0 + 𝑇*
𝐴% + 𝐴/ + 𝐴0 + 𝐴*

=
7𝑎/
2 − 𝑎𝑑 − 𝑑

/

2
3𝑎 − 𝑑  

 
 

Q1c)  
		We	have	𝑦# = 𝑎, 

𝑦# =
7𝑎/
2 − 𝑎𝑑 − 𝑑

/

2
3𝑎 − 𝑑 = 𝑎 

 
7
2𝑎

/ − 3𝑎/ =
𝑑/

2  

𝑎/

2 =
𝑑/

2  

 
𝑑 = 𝑎 
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Q1d) 

 
⟨𝐸𝐼⟩ = ∑ 𝐸9𝐼&(!99   
 
Q1d Option 1: we sum areas 1,3 and 4. We separately compute 𝐼9,("	 for areas 1, 3, 4 about their 
“local” neutral axis y1, y3, and y4. Then, we get the 𝐼9,(!  values for areas 1, 3, 4 about 𝑦#, using 
“Steiner”. 

𝑦% = 𝑦0 =
3
2𝑎,		𝐼%,(# =

1
12𝑎

0 𝑏
4 = 𝐼0,($ 	

𝐴% = 𝐴0 = 𝑎
𝑏
4	

𝐼%(! = 𝐼%(# + (𝑦% − 𝑦#)
/𝐴% =

𝑎0𝑏
48 + (

3
2 𝑎 − 𝑎)

/ 𝑎𝑏
4 =

1
12𝑎

0𝑏 = 

𝐼%(! = 𝐼0(! =
1
12𝑎

0𝑏 

 

𝑦* =
𝑎
2 , 𝐼*(% =

1
12𝑎

0𝑏 

𝐼*,(! = 𝐼*(% + (𝑦* − 𝑦#)
/𝐴* =

1
12𝑏𝑎

0 + (
𝑎
2 − 𝑎)

/𝑎𝑏 

𝐼*,(! =
1
3𝑎

0𝑏 

 
 
Thus 

⟨𝐸𝐼⟩ = 𝐸/𝐼%(! + 𝐸/𝐼0(! + 𝐸%𝐼*(! 	

⟨𝐸𝐼⟩ = 2𝐸% ∗
1
12 𝑎

0𝑏 + 2𝐸% ∗
1
12 𝑎

0𝑏 + 𝐸% ∗ 𝑎0
𝑏
3	

⟨𝐸𝐼⟩ =
2
3𝐸%𝑎

0𝑏 

 
Alternative Q1d  
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option 2: we sum 𝐸9 	𝐼9,("	 for areas 2 and 4 and subtract 𝐸9 	𝐼9,("		 for area 5. Like before, we need 
to use Steiner to go from 𝑦9  to 𝑦# 
 

𝐼;<=,(/ = 	𝐼/,(& − 𝐼>(' =
1
12𝑏𝑎

0 −
1
12
𝑏
2 𝑎

0 =
1
24𝑎

0𝑏 

𝐼;<=,(# =	
1
24 𝑎

0𝑏 + t
3
2𝑎 − 𝑎u

/

(𝑎𝑏 −
𝑎𝑏
2 ) =

1
6𝑎

0𝑏 

⟨𝐸𝐼⟩ = 𝐸/(𝐼;<=,(#) + 𝐸%𝐼*(! = 2𝐸% ∗
1
6 𝑎

0𝑏 + 𝐸% ∗ 𝑎0
𝑏
3 =

2
3𝐸%𝑎

0𝑏 

 
 
 
Q1d Option 3: using integrals: one can also use the integral definition of ⟨𝐸𝐼⟩ 
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Q1e) finding 𝑤(𝑥) using the Superposition method: 

 
𝑤(𝑥) = 𝑤,(𝑥) + 𝑤.(𝑥) 

 
From the tables we find 𝑤,(𝑥)	and	𝑤.(𝑥) 

 

					𝑤,(𝑥) =
−𝑞𝑥
24⟨𝐸𝐼⟩

(𝐿0 − 2𝐿𝑥/ + 𝑥0),									0 ≤ 𝑥 ≤ 𝐿 

 

⎩
⎪
⎨

⎪
⎧𝑤.%(𝑥) = +

𝑞𝐿
2 𝑥

1
48⟨𝐸𝐼⟩

(3𝐿/ − 4𝑥/) =
𝑞𝐿𝑥(3𝐿/ − 4𝑥/)

96⟨𝐸𝐼⟩ ,																																															0 ≤ 𝑥 ≤
𝐿
2

𝑤./(𝑥) = +
𝑞𝐿
2
(𝐿 − 𝑥)

1
48⟨𝐸𝐼⟩

[3𝐿/ − 4(𝑥 − 𝐿)/] =
𝑞𝐿(𝐿 − 𝑥)[3𝐿/ − 4(𝑥 − 𝐿)/]

96⟨𝐸𝐼⟩
,
𝐿
2
≤ 𝑥 ≤ 𝐿

⎭
⎪
⎬

⎪
⎫

 

 
Combining:  

𝑤(𝑥) = �
𝑤,(𝑥) + 𝑤.%(𝑥),						0 ≤ 𝑥 ≤

𝐿
2

𝑤,(𝑥) + 𝑤./(𝑥),						
𝐿
2 ≤ 𝑥 ≤ 𝐿

	

											=

⎩
⎨

⎧
1
⟨𝐸𝐼⟩

(−
1
24
𝑞𝑥* +

1
24
𝑞𝐿𝑥0 −

1
96
𝑞𝐿0𝑥)																																										0 ≤ 𝑥 ≤

𝐿
2

1
⟨𝐸𝐼⟩ (−

1
24 𝑞𝑥

* +
3
24𝑞𝐿𝑥

0 −
1
8𝑞𝐿

/𝑥/ +
5
96𝑞𝐿

0𝑥 −
1
96 𝑞𝐿

*)									
𝐿
2 ≤ 𝑥 ≤ 𝐿

 

 
 
Q1e) Alternative method: integrating 𝑤(𝑥) from 𝑀(𝑥), after finding M(x) by sections 
 
𝑑/𝑤
𝑑𝑥/ =

𝑀(𝑥)
⟨𝐸𝐼⟩  

 
 



Micro-200 p. 10 

𝑀%(𝑥) = −
1
2𝑞(𝐿 − 𝑥)

/ +
𝑞𝐿
4
(𝐿 − 𝑥) +

𝑞𝐿
2 (

𝐿
2 − 𝑥) = −

1
2𝑞𝑥

/ +
1
4𝑞𝐿𝑥, 0 ≤ 𝑥 ≤

𝐿
2 

𝑀/(𝑥) = −
1
2𝑞(𝐿 − 𝑥)

/ +
𝑞𝐿
4 (𝐿 − 𝑥) = −

1
2𝑞𝑥

/ −
1
4𝑞𝐿

/ +
3
4𝑞𝐿𝑥,

𝐿
2 ≤ 𝑥 ≤ 𝐿 

 
Do a first integration to find 𝑤’(𝑥): 

𝑑𝑤
𝑑𝑥 =

⎩
⎨

⎧
−1
⟨𝐸𝐼⟩ (

1
6 𝑞𝑥

0 −
1
8𝑞𝐿𝑥

/ + 𝐶%),									0 ≤ 𝑥 ≤
𝐿
2

−1
⟨𝐸𝐼⟩

(
1
6
𝑞𝑥0 −

3
8
𝑞𝐿𝑥/ +

1
4
𝑞𝐿/𝑥 + 𝐶/),						

𝐿
2
≤ 𝑥 ≤ 𝐿

 

 
Do a 2nd integration to get 𝑤(𝑥): 

𝑤(𝑥) =

⎩
⎨

⎧
−1
⟨𝐸𝐼⟩ (

1
24 𝑞𝑥

* −
1
24𝑞𝐿𝑥

0 + 𝐶%𝑥 + 𝐶0),										0 ≤ 𝑥 ≤
𝐿
2

−1
⟨𝐸𝐼⟩

(
1
24
𝑞𝑥* −

3
24
𝑞𝐿𝑥0 +

1
8
𝑞𝐿/𝑥/ + 𝐶/𝑥 + 𝐶*),						

𝐿
2
≤ 𝑥 ≤ 𝐿

 

 
Boundary condition and continuity conditions allow finding the four constants: 

𝑤(0) = 0	
𝑤(𝐿) = 0 

𝑤(𝑥)
+2()/)

( = 𝑤(𝑥)
+2()/)

) 	

t
𝑑𝑤
𝑑𝑥u+2()/)(

= t
𝑑𝑤
𝑑𝑥u+2()/))

 

Solution for the four constants: 

𝐶% =
1
96𝑞𝐿

0,				𝐶/ =
−5
96 𝑞𝐿

0, 						𝐶0 = 0,							𝐶* =
1
96𝑞𝐿

* 

 
 
Overall, solution for the deflection 𝑤(𝑥) is: 

𝑤(𝑥) =

⎩
⎨

⎧
1
⟨𝐸𝐼⟩

(−
1
24
𝑞𝑥* +

1
24
𝑞𝐿𝑥0 −

1
96
𝑞𝐿0𝑥),							0 ≤ 𝑥 ≤

𝐿
2

1
⟨𝐸𝐼⟩ (−

1
24 𝑞𝑥

* +
3
24𝑞𝐿𝑥

0 −
1
8𝑞𝐿

/𝑥/ +
5
96𝑞𝐿

0𝑥 −
1
96 𝑞𝐿

*),							
𝐿
2 ≤ 𝑥 ≤ 𝐿
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Q1f)  Method 1: by sections 
 

 
 

We need to cut the beam twice.  For the first cut,	0	 ≤ 	𝑥	 ≤ 	𝐿/2,  

 
Sum of forces in y:   𝑉%(𝑥) + 𝑅,( − 𝑞 ∙ 𝑥 = 	0, 

𝑉%(𝑥) = 	𝑞𝑥 −	
𝑞𝐿
4 , 

Sum of Moments at point A:     

𝑉%(𝑥) ∙ 𝑥 + 𝑀%(𝑥) − 	𝑞 ∙ 𝑥 ∙
𝑥
2 = 	0, 

Therefore, for 0	 ≤ 	𝑥	 ≤ 	𝐿/2, 

𝑀%(𝑥) = 	−
𝑞𝑥/

2 +	
𝑞𝑥𝐿
4 , 

 
For the second cut, 𝐿/2 ≤ 	𝑥	 ≤ 𝐿, 
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Sum of forces in y:   𝑉/(𝑥) + 𝑅,( − 𝑞 ∙ 𝑥 + 𝑃 = 	0, 

𝑉/(𝑥) = 	𝑞𝑥 −	
𝑞𝐿
4 −

𝑞𝐿
2 , 

Sum of Moments at point A:    

𝑉/(𝑥) ∙ 𝑥 + 𝑀/(𝑥) + 𝑃 ∙
𝐿
2 − 	𝑞 ∙ 𝑥 ∙

𝑥
2 = 	0, 

Therefore, for 𝐿/2	 ≤ 	𝑥	 ≤ 	𝐿, 

𝑀/(𝑥) = 	−
𝑞𝑥/

2 +	
3𝑞𝑥𝐿
4 −	

𝑞𝐿/

4 	, 
 
 
Q1f Method 2: by integrating the load to get 𝑽(𝒙), then integrating 𝑽(𝒙) to get 𝑴(𝒙) 
𝑞(𝑥) 	= 	𝑞, for 0 ≤ x ≤ L, with a point load P at 𝑥 = 𝐿/2 
 
For 0	 ≤ 	𝑥	 ≤ 	𝐿/2,  

𝑉%(𝑥) = 	f𝑞(𝑥) + 𝐶% =	−𝑞 ∙ 𝑥 + 𝐶%	 

For 𝐿/2	 ≤ 	𝑥	 ≤ 	𝐿, 

𝑉/(𝑥) = 	fq(x) + 𝐶/ =	−𝑞 ∙ 𝑥 + 𝐶/ 

Since  

𝑉%(0) = 	𝑅,( =	
𝑞𝐿
4 , 

We have 	

𝐶% =	
𝑞𝐿
4 , 

 
The point load P give a step in 𝑉(𝑥), so  

𝑉/(𝐿/2) = 	𝑉%(𝐿/2) + 𝑃 
Hence 	

𝐶/ =	
3qL
4 , 

Therefore,	

𝑉%(𝑥) = 	−𝑞 ∙ 𝑥 +
𝑞𝐿
4 	

𝑉/(𝑥) = 	−𝑞 ∙ 𝑥 +
3𝑞𝐿
4  

We now integrate 𝑉(𝑥) to find 𝑀(𝑥) 
For 0	 ≤ 	𝑥	 ≤ 	𝐿/2,  

𝑀%(𝑥) = 	f𝑉%(𝑥) + 𝐶0 =	−
𝑞𝑥/

2 +	
𝑞𝑥𝐿
4 + 𝐶0	 

For 𝐿/2	 ≤ 	𝑥	 ≤ 	𝐿,  

𝑀/(𝑥) = 	f𝑉/(𝑥) + 𝐶* =	−
𝑞𝑥/

2 +	
3𝑞𝑥𝐿
4 + 𝐶* 

Since 𝑀%(0) 	= 	0, and 𝑀/(𝐿) 	= 	0, we have: 
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𝐶0 = 	0, 

𝐶* =	−	
𝑞𝐿/

4  

Thus, we obtain (as above): 

𝑀%(𝑥) = 	−
𝑞𝑥/

2 +	
𝑞𝑥𝐿
4 	, 

𝑀/(𝑥) = 	−
𝑞𝑥/

2 +	
3𝑞𝑥𝐿
4 −	

𝑞𝐿/

4 	 
 
Max of Mz(x) 

 
To find the maximum, we compute M’(x)=0, and find 𝑥 = 𝐿/4 and 𝑥 = 3𝐿/4 
 
For 0	 ≤ 	𝑥	 ≤ 	𝐿/2, 

𝑀%(𝑥)A1+ =	𝑀% t
𝐿
4u = 	

𝑞𝐿/

32 	, 
For 𝐿/2	 ≤ 	𝑥	 ≤ 	𝐿, 

𝑀/(𝑥)A1+ =	𝑀/ t
3𝐿
4 u = 	

𝑞𝐿/

32 	, 
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Q1g)  
We know that 𝑦# 	= 	𝑎, and we also have: 

𝑀% t
𝐿
4u = 	

𝑞𝐿/

32 	

〈𝐸𝐼〉 = 	
2𝐸%𝑎0𝑏
3  

We know: 	

𝜎+(𝑦) = 	
−𝐸(𝑦) ∙ 𝑀&(𝑥)

〈𝐸𝐼〉 ∙ (𝑦 − 𝑦#)	

 

 
Therefore, for the blue part (a ≤ y ≤ 2a), we have: 

σ+(y) = 	
−2𝐸% ∙ M% �

L
4�

〈𝐸𝐼〉 ∙ (𝑦 − 𝑎) 

σ+(y) = 	
−2𝐸% ∙ 	

𝑞𝐿/
32

2𝐸%𝑎0𝑏
3

∙ (𝑦 − 𝑎) = 	−	
3𝑞𝐿/

32𝑎0𝑏 ∙ (𝑦 − 𝑎) 

 
For the green part at the bottom (0 ≤ y ≤ a), we have: 

σ+(y) = 	
−𝐸% ∙ M% �

L
4�

𝐸𝐼 ∙ (𝑦 − 𝑎) 

σ+(y) = 	
−𝐸% ∙

𝑞𝐿/
32

2𝐸%𝑎0𝑏
3

∙ (𝑦 − 𝑎) = 	−	
3𝑞𝐿/

64𝑎0𝑏 ∙ (𝑦 − 𝑎) 

 

The maximum |σ+(y)| occurs at 𝑦	 = 	2𝑎, located on the top of the blue part,  

𝜎+(𝑦 = 2𝑎) = 	−	
3𝑞𝐿/

32𝑎/𝑏 						< 0 

 
Which means the top of the beam is in compression. 
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Approximate shape of the beam: we can see that at L/4 the top is in compression and the 
bottom is in tension. 
 

 
 


